
 

  
Abstract—Bandwidth usage has become more complex such 

that it is not uncommon that multiple signals of appreciable 
power may be present within the same bandwidth.  The presence 
of multiple signals in addition to additive white Gaussian 
(AWGN) increases the difficulty of detecting frequency-hopped 
(FH) waveforms. This paper investigates the performance of an 
exponential-averaging based FH detection method in the 
presence of interfering signals and AWGN.  The detection 
method provides an estimate of the noise plus inference spectrum 
using exponential averaging and then generates an estimate of 
the desired signal spectrum by combining the estimated noise 
plus interference spectrum with the composite (desired signal 
plus interference plus noise) spectrum. Finally, this paper 
evaluates the detector’s performance as a function of the 
exponential coefficient, the combining method (division or 
subtraction), signal-to-AWGN ratio (SNR), and signal-to-
interference ratio (SIR). 
 

Index Terms—Detection, estimation, frequency-hopped, 
exponential averaging. 

I. INTRODUCTION 
HE additional robustness of using frequency-hopping (FH) 
over non-FH signals in an interference environment 

makes FH signals well suited for use in frequency bands that 
contain multiple signals [1]. The presence of interference 
signals in addition to additive white Gaussian noise (AWGN) 
increases the difficulty of detecting a FH signal. FH detection 
methods are dependant on the amount of a priori knowledge of 
the channel, the interference signals, and the FH signal.  In the 
case of perfect knowledge of the previous three factors, an 
optimum detector can be constructed. Since this is rarely the 
case, alternate approaches are required.  

This paper investigates the recovery of a FH signal in the 
presence of wideband interference signals and AWGN.  The a 
priori knowledge assumed in this paper is that the noise is 
AWGN, the interfering signals are high power wideband 
signals relative to a FH bin bandwidth, the FH signal is 
bounded within a given bandwidth, and the FH sequence is 
fixed for an entire search cycle. A general description of the 
exponential averaging FH detector is presented in Section II. 
In Section III, the signal, interference, and noise are discussed 
as well as the signal-to-AWGN (SNR) and signal-to-
interference ratio (SIR) metrics. The simulation methods and 
 
 

results are presented in Section IV. The performance of the 
exponential averaging FH detector is displayed as a graph of 
probability of detection dP  versus SIR for a fixed value of 
SNR and probability of false alarm fP . This paper expands on 
the work in [2] by including AWGN in addition to the 
interference signals, by improving the initial conditions used 
by the exponential averaging algorithm, by including the 
scaled subtraction combination method, and by evaluating the 
detector’s performance with respect to dP  via simulations.  

II. EXPONENTIAL AVERAGING FH DETECTOR 
Exponential averaging is used to generate a spectral 

estimate of the AWGN plus the interference. The digitized 
signal is separated into smaller data segments, and the 
segments are transformed to the frequency domain using the 
discrete Fourier transform (DFT), weighted according to their 
order. The DFT of a segment is  
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where N is the number of samples and ( )x n  is the sampled 
data [3]. The detection process is expressed analytically as 
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where ( )M k  is the AWGN plus interference spectral 
estimate, α  is a weight factor which has values ranging from 
zero to one, L is the number of segments that the data is 

separated into, and ( ) ( ) 2

i iY k X k= is  the magnitude squared 

of the ith segment DFT.  
The spectral estimate of the FH signal is obtained by 

combining ( )M k  with the composite (desired signal, 
interference, and noise) spectrum. The two combining 
methods used in this paper are scaled subtraction combining 
and quotient combining. The combining methods use element-
by-element operations with respect to the frequency bins. The 
FH signal spectral estimation process using quotient 
combining is expressed analytically as 
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The FH signal spectral estimation process using scaled 
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subtraction combining is expressed analytically as 
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where β is a scaling factor and the operation is implemented 
element-by-element with respect to k. The scaling factor β  is 

used to normalize ( )M k  with respect to the average values 

of ( )iY k  and is given by  
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The reciprocal of β  is the geometric series, so the 
approximation for β  is exact as L approaches infinity. The 
scaling factor β  can also be included in quotient combining 
as a normalizing factor.  

Describing the nature of the exponential averaging FH 
detector is more objective than describing how the parameters 
α , N, and L are selected. The primary method used for 
selecting the parameters is trial and error based on simulation 
results. However, a brief discussion of exponential averaging 
and the interrelation of N and L does provide some intuitive 
sense from which to subjectively address the selection of α , 
N, and L. 

The spectral average of a series of sample sets from the 
same random process will tend to produce a smooth shape as 
the number of sample sets increases. This result is fairly 
intuitive in that the underlying spectrum of the random process 
tends to become more self evident as more data is averaged. 
Thus, it is not intended as a noise reduction method in and of 
itself since the noise is not reduced but rather smoothed.  

In the event that a signal is not present during a portion of 
the period over which the average is taken, that signal’s 
spectra will not be as strongly represented as compared to how 
it otherwise would have been represented if the signal was 
continuously present. FH signals are just such signals. Thus, if 
a spectral averaging process is used to estimate the spectrum 
from a composite signal which includes a FH signal, then the 
FH signal is suppressed. The amount that the FH signal is 
suppressed is related to the hop rate and the period over which 
the average is taken. As an example, if the averaging period is 
less then the FH sequence cycle, then a number of the 
frequency hops may be completely unrepresented in the 
spectral estimate.  

The discussion above implies linear averaging, which 
equally weights all elements. Exponential averaging weights 
more recent elements more heavily. Thus, exponential 
averaging provides a convenient method to retain the benefits 
of averaging and has the potential to suppress signals with a 
time varying spectrum. The parameter α  determines how 
heavily recent elements are weighted in the exponential 
average. A few factors that help determine what α  should be 
are the amount of data that is available for processing, the 
duration of the FH hop cycle, and the duration of a full cycle 
for the interference signal. The parameter α  should be chosen 
such that the spectrum of the FH signal appears time varying. 

Thus, by the time a hop is represented in a segment its 
previous representation is negligible in ( )M k . Similarly, the 
factors used to determine α  are also used to determine what 
values should be chosen for N and L.  

The values of N and L are somewhat less arbitrary. The 
values of N and L are inversely proportional, assuming that the 
data segments are not zero padded. This assumption then 
implies that the segment size and N are equal. The value of N 
has an upper bound of the data length and a more practical 
upper restriction due to errors that result from exceeding 
machine memory. The value of N has a lower bound due to 
required frequency resolution. As an example, for most 
applications a 64 point DFT to evaluate a 10 MHz bandwidth 
is insufficient. Finally, the value of N should be chosen to be 
an integer power of two. This allows the DFT to be evaluated 
using a fast Fourier transform (FFT) without requiring zero 
padding.  

In general it is better to choose smaller values of N within 
the range previously discussed. The reason that a smaller 
segment size is desired is that it reduces the chance that a 
segment contains multiple hops and, thus, increases the 
suppression of the FH signal by the exponential averaging. 
Once the value of N is determined, then the value of L is the 
integer number of times that N goes into the data length. Data 
that does not make up a complete sample set can either be 
disregarded or zero padded and used. 

III. SIGNALS AND METRICS 
The FH signal used to evaluate the two detection methods 

discussed in this paper is a FH minimum-shift keyed (MSK) 
waveform with seven frequency hops. The carrier frequency is 
10 MHz. The FFT of the FH signal is shown in Fig. 1. The 
interference signal is the sum of a binary phase-shift keyed 
(BPSK) signal and a continuous wave (CW) signal. There are  
21 CW signals in the bandwidth of interest. The FFT of the 
interference signal is shown in Fig. 2. The signals are sampled 
at 50 MHz. The BPSK signal is selected because of its 
relatively flat spectrum near the center of the main lobe. The 
CW signal was selected for its narrowband characteristic 
which is similar to a tone jamming signal. Tone jamming can 
be the most effective noise jammer to FH systems [4]. Since 
the two interference signals are dissimilar, the combination of 
the two signals summed with AWGN is a reasonably hostile 
environment in which to evaluate the detector. Visually, it is 
clear that if Fig. 1 and Fig. 2 are superimposed onto each 
other, it would be difficult to find the FH/MSK signal.  
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Fig. 1. Fourier transform of FH/MSK signal.  
 

 
Fig. 2. Fourier transform of interference signals (BPSK and CW).  

 
The performance metrics are SIR, SNR, and dP .  The 

signal power in SIR and SNR is the power in the FH/MSK 
signal. The interference power in SIR is the power of the 
BPSK and CW signals summed in the time domain. The noise 
power in SNR is the power in the AWGN. The values of SIR 
and SNR are varied by scaling normalized time domain 
signals. The metric dP  is estimated by simulation, dividing 
the number of detections by the number of simulations runs. 

IV. SIMULATION METHODS AND RESULTS 
The simulations are generated in MATLAB. The FH/MSK, 

BPSK, and CW signals contain 1,032,192 samples. Since the 
sampling frequency is 50 MHz, the duration of each signal is 
approximately 20 ms. The fft function in MATLAB is used to 
compute the spectrum. The input data size used in the fft 
function is generally set to integer powers of two. For the 
simulations, a minimum spectral resolution of 24 kHz is 
assumed. This assumption sets the minimum number of points 
in the FFT to 2,048.  The minimum number of points in the 
FFT is used unless otherwise stated. The minimum spectral 
resolution assumption may be based on a priori knowledge of 
the modulation type, hop rate, and the minimum frequency 
spacing required for signal orthogonality. The search range 
selected for the simulations is from 0 to 25 MHz. The 

frequency hops of interest lie between 6 and 13 MHz. For this 
reason, the x axis of the figures displaying the frequency 
response is limited to 5 to 15 MHz even though the data is 
processed between 0 and 25 MHz.  

A. Interference/Noise Spectrum Estimation 
The interference plus AWGN spectrum estimate is generated 

using (2) and shown in Fig. 3. The spectrum is generated using 
a 24,576-point FFT. The 24,576 point FFT was used verses 
the 2,048 FFT so that Fig. 3 would better replicate Fig. 2, 
which was generated using a 1,048,576 point FFT. Although 
the different scaling of Fig. 2 and Fig. 3 does not show it 
clearly there is a magnitude difference between the spectrum 
in the two figures. The magnitude difference between the two 
figures is attributed to the negative SIR with which Fig. 3 is 
generated. The SIR and SNR are obtained by holding the FH 
signal amplitude constant and varying the interference and 
AWGN signals to obtain the desired SIR and SNR, 
respectively. 

 

 
Fig. 3. Spectral interference estimate with 0 .9α = . 

 
Two interference plus AWGN spectral estimates are shown 

in Fig. 3 to illustrate the influence of α  on the estimate. The 
two most significant differences between the two estimates are 
the emerging spike at 11.7 MHz when 0.99α =  and the 
slightly larger magnitude of the spike at 12.1 MHz when 

0.9α = . The two spikes are components of the FH/MSK 
signal. From these observations, it can be deduced that 
different values of α  suppress components of the FH signal 
differently. A method for exploiting this conclusion is 
discussed in the next section. 

B. FH Signal Spectrum Estimation 
The variations in the suppression of the FH signal due to 

different values of α can be exploited using the two 
combining methods in (3) and (4). The results of the 
simulation shown in Figs. 4 and 5 provide some insight into 
how the two combining methods respond differently to 
differing values of α . In Fig. 4 the quotient combining 
method noise floor variance significantly increases for smaller 
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α . The numbers 1 through 7 in Figs. 4 and 5 show the hop 
order with 7 being the most recent hop. 

 

 
Fig. 4 Spectral FH signal estimate using quotient combining. 

 

 
Fig. 5 Spectral FH signal estimate using scaled subtraction combining. 

 
The earlier segments’ contribution to the FH signal spectrum 

estimate is increased as α  is increased within its range. This 
increase in earlier segment contribution improves the AWGN 
estimate and results in lowering the noise floor variance. 
However, the two combining methods’ sensitivity to the lower 
noise floor variance differs. The quotient combining method is 
more sensitive to changes in the noise floor variance and, thus, 
requires a larger α  to maintain a certain performance level. 
The subtraction combining method is less sensitive to the 
perturbation and has similar performance levels for the range 
0.8 1α< < .  

This difference in sensitivity relegates the quotient 
combining method to values of α  relatively close to one. 
Since the contribution of earlier segments increases as the 
value of α  approaches one, more segments are needed the 
closer α  is to one. This result indicates that the quotient 
combining method requires more segments than the scaled 
subtraction method. As the SIR and SNR are lowered, 
however, the quotient combining method outperforms the 
scaled subtraction combining method, as shown in Table I and 

Table II. The values in the tables are generated using single 
simulations and are presented as performance guidelines vice 
performance measures since they do not include any 
probabilistic measures.   

 
TABLE I 

The number of frequency hops detected by the exponential averaging FH 
detector given a 7 hop FH/MSK signal, quotient combining, and the  
respective SNR and SIR. 
SNR dB (across)  
SIR dB (down) 

0 -3 -6 -9 -12 

0 6 6 6 6 5 
-3 6 6 6 6 4 
-6 6 6 6 5 4 
-9 6 6 5 5 3 
-12 4 4 4 4 2 
-15 3 3 2 2 1 
-18 1 1 0 0 0 
 

TABLE II 
The number of frequency hops detected by the exponential averaging FH 
detector given a 7 hop FH/MSK signal, scaled subtraction combining, 
 and the respective SNR and SIR. 
SNR dB (across)  
SIR dB (down) 

0 -3 -6 -9 -12 

0 7 7 7 7 2 
-3 7 7 7 7 2 
-6 7 7 5 3 1 
-9 5 4 3 2 0 
-12 2 1 1 1 0 
 

Before describing the performance measures one other 
difference between the two combining methods should be 
discussed. Hops in the quotient combining method consist of 
both maxima and minima whereas hops in the scaled 
subtraction combining are exclusively maxima. The reason for 
the two extremes in quotient combining is that the hops that 
are poorly suppressed in the AWGN plus interference spectral 
estimate are repeatedly compared to segment spectrums where 
that particular hop is not present. This produces a minimum 
value in the signal spectral estimation. This also explains why 
there are only 6 hops detected verses 7. The obscured hop is 
the mid-hop transition point between the effectively 
suppressed hops and the poorly suppressed hops. 

C. Decision Criteria 
It is desirable that the performance measures that are 

selected will optimize the detector’s performance. The 
detector is not the optimum detector since there is limited a 
priori knowledge. However, the decision criteria that the 
detector uses to evaluate the data can be optimized with 
respect to the detector. What is meant by optimum decision 
criteria is that fP  does not exceed a preset value and that dP  
is maximized. The threshold is obtained using 

 ( )
t

f x
V

P f x dx
∞

= ∫  (6) 

where x is the random variable (RV) that is the input into the 
detector comparator when only noise (undesirable signals) are 
present, ( )xf x  is the probability density function of the RV x, 
and tV  is the threshold [1]. An analytic expression for ( )xf x  
for scaled subtraction combining was sought by taking the 
inverse Fourier transform of the product of the noise and 
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interference characteristic functions and then applying the 
central limit theorem [5]. Since the summed RVs were not 
demonstrated to be independent as required by the central 
limit theorem, a simulation based estimate of the probability 
density function was constructed.  

To narrow the focus of the paper, and since quotient 
combining has performance advantages over scaled 
subtraction combining, the rest of the paper will primarily 
focus on quotient combining. The number of points in the 
simulation FFT is set to 2,048. Thus, there are 1,024 
frequency bins that correspond to frequencies from 0 to 25 
MHz. The output from each one of these bins is considered a 
RV, and their distribution must be known to set the decision 
criteria. 

The simulation based estimate of the probability density 
function for the individual frequency bins, given quotient 
combining, is well modeled by a Gaussian distribution as 
shown in Fig. 6. The mean is 504 and the variance is 14.5.  
The probability density function is consistent for noise-to-
interference ratios from 18 dB to -18 dB throughout the 
spectrum. The threshold was set to 3.5 standard deviations 
above the mean. The resulting fP  is 0.0002. The simulation 
based false alarm error ratio is 0.0005. The false alarm ratio is 
generated from over a quarter of a million simulations where 
each simulation processed over a million data points. 

 

 
Fig. 6 Gaussian estimate (line) and histogram of a single frequency bin 
component within the AWGN plus interference spectral estimation.  

 
Before the threshold can be applied, the FH signal’s effect 

on the distribution should be understood. The effect of a hop 
on a frequency bin’s distribution varies depending on whether 
the hop is detected as a minimum or a maximum. If the hop is 
detected as a maximum, then the mean is positively shifted. 
When the hop is detected as a minimum, the mean is 
negatively shifted. Thus, the threshold must be used at both 
positive and negative values to ensure that both maxima and 
minima hops are detected. This doubles the value of fP  and 
closes the gap between the theoretical and the measured result.  

D. Simulation Results 
The simulation results are presented in graphs of the 

detector’s performance for each specific hop. The graphs plot 
estimated dP  verses SIR for a fixed SNR. The hops are 
numbered according to their temporal order as indicated in 
previous figures. Hop number 5 was not included since its 
estimated dP  is less than 0.01. The dP  estimates are based on 

simulations that cycled 5,000 times. To cover the exponential 
averaging detector’s effective range of performance, the SNR 
values are -3 dB, -9 dB, and -15 dB.  

The simulation results when the SNR equals -3 dB shows 
the general trend that the number of hops that are detectable is 
reduced as SIR decreases as shown in Fig. 7. The order at 
which specific hops are obscured from detection is a 
combination of the local SIR at the hop frequency, the SNR, 
and the temporal hop order where the mid-hops are more 
obscured. Hop number five is the mid-transition hop and is 
obscured from detection. In an SIR dominated environment, 
the temporal hop order and local SIR at the hop frequencies 
predominantly determine the order at which specific hops are 
obscured. The frequency hop with the lowest local SIR is hop 
four with hops one and seven a fraction of a dB higher, hops 
two, three, and five about 6 dB up, and hop six 10 dB up, as 
shown by Figs. 1 and 2. 

 

 
Fig. 7 Estimated dP  verses SIR with an SNR equal to -3 dB for 6 of the 7 
hops using an exponential averaging FH detector with quotient combining.  

 
Based on the local SIR and temporal order, the first hop 

expected to be obscured from detection is hop-four; however, 
as discussed previously, the mid-transition hop (hop five) is 
obscured from detection first. Thus, the temporal order of hops 
obscured is shifted to more recent temporal mid-hops. Hop 
four is the next hop to be obscured from detection, followed 
by hops one and seven as a result of the local SIR. The more 
recent end-hop, hop seven, has a one dB performance 
advantage, over the earlier end-hop hop one showing the 
emphasis of the recent end-hop. At low SIR relative to the 
SNR, the detector’s performance with hops two and three is 
dominated by the SIR as compared to the one dB performance 
difference shown by the hop order influence with hops one 
and two. Note that the relative performance between hop four 
and hops two and three is approximately 6 dB, which 
corresponds to the local SIR difference between the hops. The 
last hop to be obscured from detection is hop six, which is 9 
dB down from hop four. This closely corresponds to hop-six 
being 10 dB down from hop-four with respect to the local SIR. 
The abrupt change in the estimated probability of detection for 
specific hops is indicative of a jamming environment or, 
equivalently, an environment where the influence of SIR 
versus SNR dominates the detector’s performance.  
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The simulation result when the SNR = -9 dB further 
supports the general trend that the number of hops that are 
detectable is reduced as SIR decreases as shown in Fig. 8. The 
increased influence of SNR on the detector’s performance is 
shown by the less abrupt change of the estimated probability 
of detection for hops two, three, four, and six in Fig. 8. The 
detector’s better performance with end-hops versus mid-hops 
as the significance of SNR increases over SIR is illustrated by 
the performance differences between hops two and three in 
Figs. 7 and 8. The minimum influence of SNR on the 
detection of hops one and seven is shown by the similar abrupt 
change in the estimated probability of detection in Figs. 7 and 
8. These observations indicate that the relation between the 
hop order and the detector’s performance increases as SNR 
increases relative to SIR. 

 

 
Fig. 8 Estimated dP  verses SIR with an SNR equal to -9 dB for 6 of the 7 
hops using an exponential averaging FH detector with quotient combining. 

 
The simulation result when SNR = -15 dB shows the 

general trend that the number of hops that are detectable is 
reduced as SIR is decreased, as shown in Fig. 9. The dominant 
influence of SNR versus SIR with respect to the detector’s 
performance is shown by the gradual change in the estimated 
probability of detection for all hops in Fig. 9. The relation of 
the detector’s better end-hop versus mid-hop performance as 
SNR increases relative to SIR is further supported by the 
detector’s better performance with end-hops one, two, and 
seven as compared to mid-hops three and six, as shown in Fig. 
9. The performance results when SIR is dominate shown in 
Fig. 7, provide a limiting performance measure for decreased 
SNR illustrated in Figs. 8 and 9. Finally, no relationship is 
observed between the estimated probability of detection for a 
specific hop and the hop’s proximity to a CW signal for any of 
the simulations when SNR equals -3, -9, and -15 dB. 

 

 
Fig.. 9 Estimated dP  verses SIR with an SNR equal to -15 dB for 6 of the 7 
hops using an exponential averaging FH detector with quotient combining.  
 

V. CONCLUSION 
An exponential averaging based FH detector and its 

performance is discussed. The performance is evaluated with a 
FH/MSK signal embedded in interference waveforms and 
AWGN. The detector’s description includes how the detector 
estimates the interference and noise spectrum, how the 
detector estimates the FH signal spectrum, and how the 
decision criteria is developed and implemented. The 
performance of the detector for various SNR and SIR is shown 
in Tables I and II and Figs. 7 through 9. In general, when 
either SNR or SIR is -15 dB or lower, the detector’s 
performance is significantly degraded.  

Future work could include theoretically evaluating the 
probability density function of the RV that models the input to 
the comparator so that a theoretical dP  and fP  can be 
evaluated, establishing the hop order based on the knowledge 
of which hop is obscured, and evaluating the algorithm for a 
fading channel. 
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